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I. INTRODUCTION

et was immensely frustrating to have to retake linear algebra multiple times in my life.

It was even more frustrating to have forgotten computation rules for gaussian elimination,

and how one uses them to find properties of the linear transformation such as rank, null

space or solution space. The issue is as follows:

Gaussian elimination is almost always taught as the first subject of any linear algebra

course, followed by the interpretation of a matrix as a linear transformation. After such an

interpretation is given and the isomorphism defined, courses rarely return to the gaussian

elimination algorithm, to explain what happens to the linear transformation when gaussian

elimination is performed. I hope to bridge this gap in this text.

In this text, T shall always be a linear transformation T : V → W , where V and W

are vector spaces over a field F. We will denote a basis for both as {v1, v2, . . . , vn} and

{w1, w2, . . . , wm}

II. ROW/COLUMN OPERATIONS

The row/column operations correspond to changing the basis of either the codomain or

domain.

Column Operations Column operations affect the basis of the domain.

1. Swapping two columns i and j swaps the basis vectors vi and vj.

2. Multiplying column i by λ corresponds to multiplying the vector vi by λ.
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3. Adding k times of column i to column j corresponds to adding vj → vj + kvi

Row Operations Row operations affect the basis of the codomain.

1. Swapping two rows i and j swaps wi and wj.

2. Multiplying row i by λ corresponds to multiplying wi by λ−1.

3. Adding k times of row i to row j corresponds to setting wi → wi − kwj (notice that i

and j flip roles here!)

It is clear that the fundamental linear transformation is not affected here, because all the

row/column operations can be expresed as a change of basis. In particular, it preserves the

rank and kernel of the linear transformation.

IMPORTANT FACT: Row/column operations on a matrix can be interpreted as

follows: The underlying linear transformation is unchanged, while the bases of either

the domain or codomain are changed.

III. REDUCED ROW ECHELON FORM

What the Reduced Row Echelon Form is is well described in many linear algebra books.

I will simply work with an example of a matrix and its reduced row echelon form:

[T ] = M :=


1 2 1 5

2 1 −1 4

1 0 −1 1

 →


1 0 −1 1

0 1 1 2

0 0 0 0

 def
= M ′,

where T is the linear transformation, and M and M ′ are the matrices in the two different

bases. Recall that since we get from the original matrix to its reduced row echelon form

by row operations, this corresponds simply to a change of basis of the codomain, not any

change of basis of the domain. Let the basis in which the linear transformation takes the

form M ′ be denoted by {w′
1, w

′
2, . . . , w

′
m} (in this particular example m = 4 )

I shall also not explain in this text what an augmented matrix is.
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IV. SOLUTION SPACE

It is clear by simply writing out the equations why the solution space for Ax = b is the

same as the solution space for Ãx = b̃, if one can get from [A|b] to [Ã|b̃] by elementary row

operations.

A. No Solutions

Now suppose we have reduced [A|b] to reduced row echelon form, and get
1 . . . . . . . . . . . .

0 1 . . . . . . . . .

0 0 0 0 1

 .

This equation clearly has no solutions, since the bottom equation is 0 = 1.

B. Unique Solution

Clearly, if Ã = I, b̃ is the unique solution.

C. Infinite Solutions

If there are nonpivotal unknowns, then for each value of the nonpivotal unknowns, there

is a solution to the system of linear equations. This is clear from choosing a value for each

of the nonpivotal unknowns, and “moving it to the other side of the equation”.

V. IMAGE & KERNEL

In this section, we will work with the example from earlier.

[T ] = M :=


1 2 1 5

2 1 −1 4

1 0 −1 1

 →


1 0 −1 1

0 1 1 2

0 0 0 0

 def
= M ′.
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A. Image Space

It is clear that the images of the vectors v1 and v2 span the entire image space, because

their images are w′
1 and w′

2, and we read off clearly that all other image vectors T (v3) and

T (v4) can be expressed in terms of T (v1) and T (v2).

However, when the “basis of the image space” is requested in linear algebra exams, this

usually means that we are to find a basis for the image space and express it in terms of

the original basis that we were given. Thus we cannot use any columns from the reduced

matrix. Instead, we use the fact that T (v1) and T (v2) form a basis, and thus read off the

image space

im(T ) = span



1

2

1

 ,


2

1

0


 .

B. Kernel

The kernel is simply the solution of the system of linear equations T (v) = 0. Recalling

that the solution space for any matrix representation of T related by row operations is

identical. Then we simply have to solve M ′v = 0. This is made significantly easier by the

matrix being in reduced row echelon form; it is however not not required. Recall that we

can let each nonpivotal unknown be a free parameter. Thus:

x1 =x3 − x4

x2 =− x3 − 2x4

It is now simple enough to come up with vectors in the kernel. But for a basis, we need

to choose 2 vectors and ensure that they are linearly independent. This is easiest done by

choosing a vector with (x3, x4) = (1, 0), and one more with (x3, x4) = (0, 1). This gives a

basis for the kernel

ker(T ) = span




1

−1

1

0

 ,


−1

−2

0

1




.
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